Search results for "Age of the universe"

showing 7 items of 7 documents

Heavy Elements and Age Determinations

2002

The age of the universe, measured from the Big Bang to the present, is at the focus of cosmology. Its determination relies, however, on the use of stellar objects or their products. Stellar explosions, like type Ia supernovae serve as standard(izable) candles to measure the expansion of the universe. Hertzsprung—Russell diagrams of globular clusters can determine the age of such clusters and thus are lower limits of the age of the galaxy and therefore also the universe. Some nuclear isotopes with half-lives comparable to the age of galaxies (and the universe) can serve as clocks (chronometers) for the duration of nucleosynthesis. The isotopes 238U and 232Th with half-lives of 4.5 × l09 and …

PhysicsSupernovaAge of the universeNucleosynthesisGlobular clusterAstronomyAstrophysicsGalaxyCosmologyNucleocosmochronologyMetric expansion of space
researchProduct

Gamma-ray detection from gravitino dark matter decay in the μνSSM

2009

16 pages, 3 figures.

PhysicsParticle physicsPhotonAge of the universe010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyDark matterGamma rayAstronomy and AstrophysicsParameter space01 natural sciencesHigh Energy Physics - Phenomenology0103 physical sciencesHigh Energy Physics::ExperimentGravitinoNeutrinoAstrophysics - High Energy Astrophysical Phenomena010306 general physicsFermi Gamma-ray Space TelescopeJournal of Cosmology and Astroparticle Physics
researchProduct

Constraints on neutrino masses from Planck and Galaxy clustering data

2013

We present here bounds on neutrino masses from the combination of recent Planck cosmic microwave background (CMB) measurements and galaxy clustering information from the Baryon Oscillation Spectroscopic Survey, part of the Sloan Digital Sky Survey-III. We use the full shape of either the photometric angular clustering (Data Release 8) or the 3D spectroscopic clustering (Data Release 9) power spectrum in different cosmological scenarios. In the Lambda CDM scenario, spectroscopic galaxy clustering measurements improve significantly the existing neutrino mass bounds from Planck data. We find Sigma m(v) < 0.39 eV at 95% confidence level for the combination of the 3D power spectrum with Planck C…

Nuclear and High Energy PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Age of the universeCosmic microwave backgroundDark matterFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesPartícules (Física nuclear)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesPlanck010303 astronomy & astrophysicsDigital sky surveyPhysicsCosmologia010308 nuclear & particles physicsHigh Energy Physics - Phenomenology13. Climate actionsymbolsDark energyBaryon acoustic-oscillationsBaryon acoustic oscillationsNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawPhysical Review D
researchProduct

Cosmic Dark Radiation and Neutrinos

2013

New measurements of the cosmic microwave background (CMB) by the Planck mission have greatly increased our knowledge about the universe. Dark radiation, a weakly interacting component of radiation, is one of the important ingredients in our cosmological model which is testable by Planck and other observational probes. At the moment, the possible existence of dark radiation is an unsolved question. For instance, the discrepancy between the value of the Hubble constant, H-0, inferred from the Planck data and local measurements of H-0 can to some extent be alleviated by enlarging the minimal ACDM model to include additional relativistic degrees of freedom. From a fundamental physics point of v…

Big BangNuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Article SubjectAge of the universeDark matterFOS: Physical sciencesLambda-CDM modelAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesBayron acoustic-Oscillationssymbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Analytic approach0103 physical sciencesPlanck010306 general physicsPhysicsAstrophysics - Cosmology and Extragalactic Astrophysics010308 nuclear & particles physicsHot dark matterFísicalcsh:QC1-999High Energy Physics - Phenomenology13. Climate actionDark radiationDark energysymbolslcsh:PhysicsAstrophysics - Cosmology and Nongalactic AstrophysicsAdvances in High Energy Physics
researchProduct

Observational constraints on the LLTB model

2010

We directly compare the concordance LCDM model to the inhomogeneous matter-only alternative represented by LTB void models. To achieve a "democratic" confrontation we explore LLTB models with non-vanishing cosmological constant and perform a global likelihood analysis in the parameter space of cosmological constant and void radius. In our analysis we carefully consider SNe, Hubble constant, CMB and BAO measurements, marginalizing over spectral index, age of the universe and background curvature. We find that the LCDM model is not the only possibility compatible with the observations, and that a matter-only void model is a viable alternative to the concordance model only if the BAO constrain…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Age of the universeFOS: Physical sciencesAstronomy and AstrophysicsLambda-CDM modelCosmological constantAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum CosmologyMetric expansion of spaceLocal Voidsymbols.namesakesymbolsDark energyBaryon acoustic oscillationsStatistical physicsAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's law
researchProduct

Relaxing cosmological neutrino mass bounds with unstable neutrinos

2020

At present, cosmological observations set the most stringent bound on the neutrino mass scale. Within the standard cosmological model ($\Lambda$CDM), the Planck collaboration reports $\sum m_\nu < 0.12\,\text{eV}$ at 95% CL. This bound, taken at face value, excludes many neutrino mass models. However, unstable neutrinos, with lifetimes shorter than the age of the universe $\tau_\nu \lesssim t_U$, represent a particle physics avenue to relax this constraint. Motivated by this fact, we present a taxonomy of neutrino decay modes, categorizing them in terms of particle content and final decay products. Taking into account the relevant phenomenological bounds, our analysis shows that 2-body deca…

Nuclear and High Energy PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Age of the universeFOS: Physical sciencesLambda-CDM model7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)symbols.namesakeHigh Energy Physics - Phenomenology (hep-ph)Seesaw molecular geometry0103 physical sciencesNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. RadioactivityPlanck010306 general physicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMass generationElectroweak interactionCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyBeyond Standard ModelGoldstone bosonsymbolslcsh:QC770-798High Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct

Gravitational violation of R parity and its cosmological signatures

1996

The discrete R-parity ($R_P$) usually imposed on the Supersymmetric (SUSY) models is expected to be broken at least gravitationally. If the neutralino is a dark matter particle its decay channels into positrons, antiprotons and neutrinos are severely constrained from astrophysical observations. These constraints are shown to be violated even for Planck-mass-suppressed dimension-five interactions arising from gravitational effects. We perform a general analysis of gravitationally induced $R_P$ violation and identify two plausible and astrophysically consistent scenarios for achieving the required suppression.

PhysicsNuclear and High Energy PhysicsParticle physicsAge of the universeDark matterHigh Energy Physics::PhenomenologyPlanck massFOS: Physical sciencesFísicaSupersymmetryLightest Supersymmetric ParticleHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)R-parityNeutralinoHigh Energy Physics::ExperimentMinimal Supersymmetric Standard Model
researchProduct